Automatic Detection of Cyberbullying in Social Media Text
نویسندگان
چکیده
While social media offer great communication opportunities, they also increase the vulnerability of young people to threatening situations online. Recent studies report that cyberbullying constitutes a growing problem among youngsters. Successful prevention depends on the adequate detection of potentially harmful messages and the information overload on the Web requires intelligent systems to identify potential risks automatically. The focus of this paper is on automatic cyberbullying detection in social media text by modelling posts written by bullies, victims, and bystanders of online bullying. We describe the collection and fine-grained annotation of a training corpus for English and Dutch and perform a series of binary classification experiments to determine the feasibility of automatic cyberbullying detection. We make use of linear support vector machines exploiting a rich feature set and investigate which information sources contribute the most for this particular task. Experiments on a holdout test set reveal promising results for the detection of cyberbullying-related posts. After optimisation of the hyperparameters, the classifier yields an F1-score of 64% and 61% for English and Dutch respectively, and considerably outperforms baseline systems based on keywords and word unigrams.
منابع مشابه
Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کاملAutomatic Detection and Prevention of Cyberbullying
Abstract—The recent development of social media poses new challenges to the research community in analyzing online interactions between people. Social networking sites offer great opportunities for connecting with others, but also increase the vulnerability of young people to undesirable phenomena, such as cybervictimization. Recent research reports that on average, 20% to 40% of all teenagers ...
متن کاملCyberbullying Detection based on Text-Stream Classification
Current studies on cyberbullying detection, under text classification, mainly assume that the streaming text can be fully labelled. However, the exponential growth of unlabelled data in online content makes this assumption impractical. In this paper, we propose a session-based framework for automatic detection of cyberbullying from the huge amount of unlabelled streaming text. Given that the st...
متن کاملHarnessing the Power of Text Mining for the Detection of Abusive Content in Social Media
The issues of cyberbullying and online harassment have gained considerable coverage in the last number of years. Social media providers need to be able to detect abusive content both accurately and efficiently in order to protect their users. Our aim is to investigate the application of core text mining techniques for the automatic detection of abusive content across a range of social media sou...
متن کاملSentiment Informed Cyberbullying Detection in Social Media
Cyberbullying is a phenomenon which negatively affects the individuals, the victims suffer from various mental issues, ranging from depression, loneliness, anxiety to low self-esteem. In parallel with the pervasive use of social media, cyberbullying is becoming more and more prevalent. Traditional mechanisms to fight against cyberbullying include the use of standards and guidelines, human moder...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.05617 شماره
صفحات -
تاریخ انتشار 2018